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The two new gem-dihalogenocyclopropanes (10S,3R)-3-(20,20-
dichloro-10-methylcyclopropyl)-6-oxoheptanoic acid, C11H16-

Cl2O3, (2), and (10S,3R)-3-(20,20-dibromo-10-methylcyclo-

propyl)-6-oxoheptanoic acid, C11H16Br2O3, (3), are iso-

structural. Both present two stereogenic centers at C10 and

C3. The absolute con®guration was determined by X-ray

methods. The cyclopropyl rings are unsymmetrical, the

shortest bond being distal with respect to the alkyl-substituted

C atom.

Comment

Despite their high ring strain, cyclopropanes are commonly

encountered among both naturally occurring and synthetic

compounds. In addition, diastereoselectively substituted

cyclopropanes have attracted attention as useful precursors of

highly strained molecules (Boche et al., 1990; Tanabe et al.,

1996) and biologically active pyrethroids (Hirota et al., 1996;

Kunzer et al., 1996). Thus, the promise of their usefulness as

synthetic intermediates is growing rapidly. We describe here

the structure of two new polyfunctionalized dichloro and di-

bromo cyclopropanes, (2) and (3), which could be valuable

synthons for pyrethroid derivatives.

These two compounds were prepared from (R)-limonene

oxide, (1), by dihalocyclopropanation of the C7 C8 double

bond followed by oxidation of the oxirane ring under Sharp-

less conditions (see Experimental). In order to con®rm the

structure assignments and establish the absolute stereo-

chemistry, single-crystal X-ray studies were carried out on

both compounds. The two derivatives crystallize isotypically;

only the chloro compound (2) is illustrated in Fig. 1 [a view of

the molecule of (3) is given in the supplementary material].

Identical numbering schemes have been employed in both

molecules. The absolute con®guration (10S,3R) has been

unambiguously determined by re®nement of the Flack (1983)

parameter. Examination of the cyclopropyl moieties indicates

that the rings are unsymmetrical, with unequal CÐC bond

lengths (Tables 1 and 3). The C3ÐC4 bond length in the

chloro derivative is 1.479 (2) AÊ , while the bonds adjacent to

the methyl and the polyfunctional substituents are longer

[C2ÐC4 1.504 (3) AÊ and C2ÐC3 1.525 (3) AÊ .] The same

trend is observed in the bromo derivative, with identical CÐC

distances within experimental error. The bond angles within

the three-membered ring re¯ect the difference observed

between bond lengths, with the smallest angle at C2 [C3Ð

C2ÐC4 58.42 (12)�; 59.1(4)� for (3)]. The Cambridge Struc-

tural Database (CSD; Allen & Kennard, 1993) has been

searched for related dihalogenocyclopropane structures

having CH2 and CR2 groups (see Scheme below). The search

was limited to independent alkyl substituents R1 and R2, and

excludes structures with interconnected R1 and R2 for which

additional strain might in¯uence the distances within the ring.

The geometry of these cyclopropane rings (Table 5) shows the

same tendency observed for (2) and (3), with a shortening of

the distal bond opposite the alkyl-substituted carbon and a

lengthening of the vicinal bonds linking the alkyl and

H-substituted C atoms with respect to the mean CÐC(ring)

length of 1.509 (2) AÊ (Allen, 1980). These results are in

agreement with a previous report (Allen, 1980). The CÐCl

bond lengths average 1.762 (2) AÊ and the CÐBr bond lengths

average 1.918 (6) AÊ , in good agreement with related

gem-dihalogenocyclopropanes, as are the XÐCÐX angles of

109.8 (1)� for (2) and 110.1 (3)� for (3).

The 3-oxobutyl chain has an extended con®guration, with

torsion angles C1ÐC11ÐC12ÐC13 of ÿ180.0 (2)�

[ÿ179.0 (6) for (3)] and C11ÐC12ÐC13ÐC14 of 166.2 (2)�

[166.3 (6) for (3)] (Tables 1 and 3). The substituents at C1, the

carboxyl group and the cyclopropane ring are anti with respect

to the oxobutyl chain. The orientations of the carboxyl group

and the cyclopropane ring are in¯uenced by CÐH� � �O and

CÐH� � �Cl (or Br) intramolecular contacts that could be

classi®ed as hydrogen bonds. An interaction between an H

atom of the cyclopropane C3 atom and O1 of the carboxyl

(Tables 2 and 4) results in a twisted conformation of carboxyl
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group C17/O1/O2 with respect to the C1/C16/C17 plane

[dihedral angle 23.1 (2)� for (2) and 24.2� for (3)]. A further

interaction occurs between Cl1 and the H atom at C1 (Tables 2

and 4).

Fig. 2 illustrates the packing of (2) in the cell, with extra-

cellular molecules included to show the single-strand

hydrogen-bonded catemers. The chain proceeds from the

carboxyl group of one molecule to the remote ketone (O3)

group of a neighbour (Table 4). Among hydrogen-bonding

catemers, the observed prevalence of subtypes describing the

relation of adjacent molecules is screw > translation > glide,

with the chains often following a cell axis (Brunskill et al., 2001).

Here, the components of the chain are related by a translation

along b. It is noteworthy that there are also short halogen� � �
O1 contacts [3.056(1) AÊ for the Cl and 3.020 (4) AÊ for the Br

derivative] which connect the hydrogen-bonded catemers.

Experimental
(R)-Limonene oxide, (1), was treated, under phase transfer catalysis

conditions, with dichloro(or dibromo)carbene (Tobey & West, 1964)

generated in situ from the reaction of chloroform (or bromoform)

with sodium hydroxide (see Scheme in Comment). The resulting

product was oxidized under Sharpless conditions (Carlson et al.,

1981), leading to a diastereoisomeric mixture of 3-(20,20-dihalo-10-

methylcyclopropyl)-6-oxoheptanoic acid. Crystals of (2) and (3) were

obtained from the corresponding mixture by fractional crystallization

from chloroform.

Compound (2)

Crystal data

C11H16Cl2O3

Mr = 267.14
Orthorhombic, P212121

a = 7.2419 (5) AÊ

b = 9.7619 (8) AÊ

c = 17.7469 (16) AÊ

V = 1254.61 (18) AÊ 3

Z = 4
Dx = 1.414 Mg mÿ3

Mo K� radiation
Cell parameters from 8000

re¯ections
� = 2.3±26.0�

� = 0.51 mmÿ1

T = 180 (2) K
Parallelepiped, colorless
0.42 � 0.40 � 0.13 mm

Data collection

Stoe IPDS diffractometer
' scans
Absorption correction: multi-scan

(SORTAV; Blessing, 1995)
Tmin = 0.788, Tmax = 0.913

9901 measured re¯ections
2418 independent re¯ections

2207 re¯ections with I > 2�(I)
Rint = 0.034
�max = 26.0�

h = ÿ8! 8
k = ÿ12! 12
l = ÿ21! 21

Re®nement

Re®nement on F 2

R(F ) = 0.024
wR(F 2) = 0.059
S = 1.04
2418 re¯ections
148 parameters
H-atom parameters constrained

w = 1/[�2(Fo
2) + (0.0375P)2

+ 0.0454P]
where P = (Fo

2 + 2Fc
2)/3

(�/�)max = 0.001
��max = 0.22 e AÊ ÿ3

��min = ÿ0.24 e AÊ ÿ3

Absolute structure: Flack (1983),
2006 Friedel pairs

Flack parameter = 0.00 (5)
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Figure 1
ORTEP-3 (Farrugia, 1997) view of molecule (2), with displacement
ellipsoids at the 50% probability level.

Figure 2
Part of the structure of (2), showing the formation of the chain parallel to
the b axis. For the sake of clarity, H atoms not participating in the
hydrogen bonding have been omitted. [Symmetry codes: (i) x, yÿ1, z; (ii)
x, y+1, z.]

Table 1
Selected geometric parameters (AÊ , �) for (2).

Cl1ÐC4 1.7668 (17)
Cl2ÐC4 1.7572 (17)
O1ÐC17 1.207 (2)
O2ÐC17 1.325 (2)
O3ÐC13 1.2175 (19)

C1ÐC2 1.528 (2)
C2ÐC4 1.505 (3)
C2ÐC21 1.511 (2)
C2ÐC3 1.524 (2)
C3ÐC4 1.478 (2)

C4ÐC2ÐC21 118.20 (15)
C4ÐC2ÐC3 58.42 (11)
C21ÐC2ÐC3 117.78 (14)
C4ÐC2ÐC1 116.65 (14)
C21ÐC2ÐC1 115.61 (16)
C3ÐC2ÐC1 118.21 (13)
C4ÐC3ÐC2 60.11 (12)
C3ÐC4ÐC2 61.46 (11)

C3ÐC4ÐCl2 118.73 (12)
C2ÐC4ÐCl2 120.84 (13)
C3ÐC4ÐCl1 118.80 (12)
C2ÐC4ÐCl1 120.02 (12)
Cl2ÐC4ÐCl1 109.80 (10)
O1ÐC17ÐO2 123.05 (14)
O1ÐC17ÐC16 125.03 (15)
O2ÐC17ÐC16 111.88 (15)

C16ÐC1ÐC11ÐC12 ÿ81.29 (17)
C2ÐC1ÐC11ÐC12 153.51 (15)
C1ÐC11ÐC12ÐC13 ÿ179.97 (15)
C11ÐC12ÐC13ÐO3 ÿ14.1 (2)
C11ÐC12ÐC13ÐC14 166.17 (16)

C2ÐC1ÐC16ÐC17 ÿ67.65 (18)
C11ÐC1ÐC16ÐC17 168.09 (14)
C1ÐC16ÐC17ÐO1 ÿ24.4 (2)
C1ÐC16ÐC17ÐO2 157.88 (14)

Table 2
Hydrogen-bonding geometry (AÊ , �) for (2).

DÐH� � �A DÐH H� � �A D� � �A DÐH� � �A

O2ÐH2� � �O3i 0.82 1.86 2.671 (2) 169
C3ÐH3B� � �O1 0.98 2.56 3.141 (2) 118
C1ÐH1� � �Cl1 0.98 2.67 3.078 (2) 105

Symmetry code: (i) x; yÿ 1; z.
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Compound (3)

Crystal data

C11H16Br2O3

Mr = 356.06
Orthorhombic, P212121

a = 7.4006 (5) AÊ

b = 9.7511 (10) AÊ

c = 18.0171 (13) AÊ

V = 1300.19 (19) AÊ 3

Z = 4
Dx = 1.819 Mg mÿ3

Mo K� radiation
Cell parameters from 8000

re¯ections
� = 2.3±26.0�

� = 6.23 mmÿ1

T = 180 (2) K
Parallelepiped, colorless
0.30 � 0.28 � 0.18 mm

Data collection

Stoe IPDS diffractometer
' scans
Absorption correction: multi-scan

(SORTAV; Blessing, 1995)
Tmin = 0.162, Tmax = 0.348

9311 measured re¯ections
2376 independent re¯ections

2070 re¯ections with I > 2�(I)
Rint = 0.074
�max = 26.1�

h = ÿ8! 8
k = ÿ11! 11
l = ÿ22! 22

Re®nement

Re®nement on F 2

R(F ) = 0.037
wR(F 2) = 0.096
S = 1.09
2376 re¯ections
148 parameters
H-atom parameters constrained

w = 1/[�2(Fo
2) + (0.0553P)2

+ 0.1506P]
where P = (Fo

2 + 2Fc
2)/3

(�/�)max = 0.016
��max = 0.51 e AÊ ÿ3

��min = ÿ0.56 e AÊ ÿ3

Absolute structure: Flack (1983),
1972 Friedel pairs

Flack parameter = ÿ0.03 (2)

The crystal of (3) was found to be twinned. However, the two

domains could be indexed and the two orientation matrices were used

in the integration process (Stoe & Cie, 1996) to produce a set of non-

overlapped re¯ections for each domain. Only the data from the

domain with the strongest intensities were retained. As the results

were satisfactory, no search for an untwinned crystal was undertaken.

In both compounds, all H atoms were introduced at calculated

positions as riding atoms (CÐH = 0.97±0.98 AÊ and OH = 0.82 AÊ ),

using AFIX37 for CH3 and AFIX87 for hydroxyl groups, with a

displacement parameter equal to 1.2 (CH and CH2) or 1.5 (CH3 and

OH) times that of the parent atom. On the basis of 2006 and 1972

Friedel pairs for compounds (2) and (3), respectively, the ®nal

re®nement allowed the fraction contribution of the inverted enan-

tiomer to vary (Bernardinelli & Flack, 1985; Flack, 1983), the abso-

lute structure parameter quoted being the re®ned value of this

contribution.

For both compounds, data collection: IPDS Software (Stoe & Cie,

1996); cell re®nement: IPDS Software; data reduction: XRED (Stoe

& Cie, 1996); program(s) used to solve structure: SIR97 (Altomare et

al., 1999); program(s) used to re®ne structure: SHELXL97 (Shel-

drick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson,

1996); software used to prepare material for publication: WinGX

(Farrugia, 1999).

Supplementary data for this paper are available from the IUCr electronic
archives (Reference: JZ1483). Services for accessing these data are
described at the back of the journal.
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